Graham Lewis

University of Minnesota

June 2025

- ▷ We modeled the labor supply decision by a representative household.
- ▷ The household traded leisure for consumption, which was obtainable through working.
- \triangleright We then incorporated labor income taxes into the model.

- ▷ So far, all income from taxes has been thrown away by the government.
- ▷ The household has not received any benefit from paying taxes.
- ▷ In reality, the government provides services from tax dollars such as Medicaid, Medicare, Social Security, an unemployment insurance.

- Social Security: Regular payments to retirees funded by payments from younger working adults.
- Unemployment Benefits: Payments to workers who lose their job to partially replace lost wages. These are typically time-limited and a fraction of previous earnings.
- Medicare: A federal health-insurance program that provides in-kind benefits including coverage of hospital, physician, and prescription-drug costs. These are provided to virtually all U.S. residents aged 65 and older, as well as certain younger people with disabilities.
- Medicaid: A joint federal-state program that offers means-tested health coverage to low-income households.
- ▷ You will learn more about the structure of government spending next mini.

- > Transfers, like taxes, are taken as given by the household.
- ▷ In our model, transfers will be guaranteed no matter the labor supply decision by the household.
- \triangleright While the tax was a set % of labor income that was taxed by the government, the transfer will be a set amount T that is given to the household, no matter their labor supply decision.

▷ We had

$$\max_{c,n} \ u(c) - \upsilon(n)$$
 such that $c = (1 - \tau_n)wn.$

 \triangleright The household will now receive a transfer T from the government, regardless of their work choice, making the problem

$$\max_{c,n} \ u(c) - \upsilon(n)$$
 such that $c = (1 - \tau_n)wn + T.$

Government Budget Constraint

- ▷ Before the government only raised funds.
- ▷ Now, the government is spending the funds it raises.
- ▷ To ensure the government is not transferring funds it does not have, we will require the government's budget to balance.
- ▷ We will need the money raised from taxes to equal the money given from transfers

$$\tau_n w n = T.$$

 \triangleright In our static model, there is no idea of the government borrowing to pay back later.

Example from Previous Lecture

Consider the following household problem

$$\max_{c,n} \ c^{\alpha} (24-n)^{1-\alpha}$$
 such that $c = (1-\tau_n)wn+T.$

▷ Note that no matter how many hours the household chooses to work, they are able to consume more than they would have been able to in a world without transfers.

Example Problem

⊳ We had

$$\max_{c,n} \ c^{\alpha}(24-n)^{1-\alpha}$$
 such that $c=(1-\tau_n)wn+T.$

- $\triangleright\,$ Given a tax rate $\tau_n,$ we'll find a value for labor supply (n) and transfer (T) such that
 - $\circ\,$ given the tax rate τ_n and transfer T, the household will maximize its utility while adhering to its budget constraint, which will yield n.
 - the government operates at a balanced budget with the labor income tax rate (τ_n) , transfer (T), and labor supplied (n).

Without Transfers

 \triangleright Let's first focus on the problem without transfers, which is

 $\max_{c,n} \ c^{\alpha} (24-n)^{1-\alpha}$ such that $c=(1-\tau_n)wn.$

▷ Using our knowledge from the previous lectures, we first consider the MRS

$$\begin{aligned} \mathsf{MRS} &= (1-\tau_n)w\\ -\frac{U_n}{U_c} &= (1-\tau_n)w\\ \frac{(1-\alpha)c^\alpha(24-n)^{-\alpha}}{(\alpha)c^{\alpha-1}(24-n)^{1-\alpha}} &= (1-\tau_n)w\\ \left(\frac{1-\alpha}{\alpha}\right)\frac{c}{24-n} &= (1-\tau_n)w. \end{aligned}$$

 \triangleright We can rearrange to solve for consumption (c) in terms of labor (n).

Without Transfers

 \triangleright Rearranging our MRS condition to solve for consumption (c) in terms of labor (n) gives us

$$c = \left(\frac{\alpha}{1-\alpha}\right)(1-\tau_n)w(24-n).$$

Plugging this into our budget constraint gives us

$$c = (1 - \tau_n)wn$$
$$\left(\frac{\alpha}{1 - \alpha}\right)(1 - \tau_n)w(24 - n) = (1 - \tau_n)wn$$
$$\alpha(24 - n) = (1 - \alpha)n$$
$$24\alpha = n.$$

Without Transfers

- \triangleright We had that the labor supplied (n) is given by $n=24\alpha.$
- $\triangleright~$ As $\alpha \to 1$ (the household only cares about consumption), the household's labor supplied will converge to 24.
- $\triangleright~$ As $\alpha \to 0$ (the household only cares about leisure), the household's labor supplied will converge to 0.
- ▷ Notice in this example the income and substitution effects cancel out.
- \triangleright No matter the real-wage (w) or labor income tax rate $(\tau_n),$ the hours supplied are $n=24\alpha.$
- \triangleright If we add a transfer, the household, taking the transfer T as given, is guaranteed T units of consumption no matter their choice of work, which, as we will see, will change their labor supplied.

 \triangleright We had

$$\max_{c,n} \ c^{\alpha} (24-n)^{1-\alpha}$$
 such that $c=(1-\tau_n)wn+T.$

- \triangleright Recall in our framework the household, taking transfers (T) as given, receives the same transfer (T) no matter how much they work or consume.
- $\triangleright~$ Our MRS condition will remain the same, with

$$\mathsf{MRS} = (1 - \tau_n)w$$
$$-\frac{U_n}{U_c} = (1 - \tau_n)w$$
$$\left(\frac{1 - \alpha}{\alpha}\right)\frac{c}{24 - n} = (1 - \tau_n)w.$$

 \triangleright We'll have the same equation for consumption (c) that we did last time, with

$$c = \left(\frac{\alpha}{1-\alpha}\right)(1-\tau_n)w(24-n).$$

▷ Now, when we plug our equation into the budget constraint we'll have

$$c = (1 - \tau_n)wn + T$$
$$\left(\frac{\alpha}{1 - \alpha}\right)(1 - \tau_n)w(24 - n) = (1 - \tau_n)wn + T$$
$$T = \left(\frac{1}{1 - \alpha}\right)(1 - \tau_n)w(24\alpha - n).$$

 \triangleright We have one equation with two unknowns (T and n). Remember we are finding the labor supplied as a function of the labor income tax rate (τ_n)

Government Budget Constraint

- Recall we discussed earlier that the government must balance its budget each period.
- \triangleright This equation is given by $T = \tau_n w n$.
- ▷ Using this and our previous work, we'll have

$$T = \tau_n w n$$

$$\left(\frac{1}{1-\alpha}\right) (1-\tau_n) w (24\alpha - n) = \tau_n w n$$

$$(1-\tau_n) 24\alpha = (1-\alpha\tau_n) n$$

$$\frac{(1-\tau_n) 24\alpha}{1-\alpha\tau_n} = n.$$

▷ Notice that in this formulation, the tax rate does indeed affect labor supply.

Labor Supply & Transfers

▷ In our model without transfers, we had

 $n = 24\alpha$

▷ In our model with transfers, we had

$$n = \left(\frac{(1-\tau_n)}{1-\alpha\tau_n}\right) 24\alpha.$$

Notice that since

$$\frac{1-\tau_n}{1-\alpha\tau_n} < 1,$$

the household works less than they did without transfers.

▷ With transfers, the household has a base level of income no matter what they choose to work.

Increasing Transfers

⊳ We had

$$n = \left(\frac{(1-\tau_n)}{1-\alpha\tau_n}\right) 24\alpha.$$

- Note that we can increase transfers to the household by increasing taxes on labor income.
- ▷ According to our solution, we have

$$\frac{\partial n}{\partial \tau_n} = (\alpha - 1) \frac{24\alpha}{(1 - \alpha \tau_n)^2} < 0.$$

 \triangleright With the above preference specifications, increasing the labor income tax rate (τ_n) , which increases transfers T, reduces the labor supplied.

Labor Supply & Transfers

- ▷ It is worth reemphasizing that the household **does not** take into account the impact that its labor supply decision has on the transfer.
- ▷ The idea is that individuals don't think about their contribution to government revenues when making labor supply decisions.
- \triangleright Mechanically, this means we cannot make the substitution $T=\tau_n wn$ when optimizing the household decision, note that

$$(1 - \tau_n)wn + T = (1 - \tau_n)wn + \tau_n wn$$
$$= wn.$$

The fact the household takes the transfer as given drives the change between our model with and without transfers.

- ▷ We incorporated transfers into our model.
- ▷ We saw that with transfers, the household had a base level of income no matter the hours worked and in our example showed that the household worked less.
- ▷ So far we have a model of labor supply and a model of labor demanded. Next time we will combine the two, defining a general equilibrium.